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A quantum chemical exploration is reported on the interaction potentials of H2O2 with the rare gases, He, Ne,
Ar, Kr, and Xe. Hydrogen peroxide (the simplest example of chiral molecule in its equilibrium geometry) is
modeled as rigid except for the torsional mode around the O-O bond. However, on the basis of previous
work (Maciel, G. S.; et al.Chem. Phys. Lett.2006432, 383), the internal mode description is based, rather
than on the vectors of the usual valence picture, on the orthogonal local representation, which was demonstrated
useful for molecular dynamics simulations, because the torsion around the vector joining the center-of-mass
of the two OH radicals mimics accurately the adiabatic reaction path for chirality changing isomerization,
following the torsional potential energy profile from equilibrium through the barriers for thetrans andcis
geometries. The basic motivation of this work is the determination of potential energy surfaces for the
interactions to be used in classical and quantum simulations of molecular collisions, specifically those leading
to chirality changes of possible relevance in the modeling of prebiotic phenomena. Particular attention is
devoted to the definition of coordinates and expansion formulas for the potentials, allowing for a faithful
representation of geometrical and symmetry properties of these systems, prototypical of the interaction of an
atom with a floppy molecule.

1. Introduction

We start this account of an investigation of the interactions
of H2O2 with the rare gases by listing a few motivations.
Stimulated in part by the interesting problem of large amplitude
vibrations, such as the chirality change transitions associated
with the torsional motions around the O-O and S-S bonds, a
systematic series of quantum chemical studies has been under-
taken on systems that play roles in biological and combustion
chemistry, and in particular in the photochemistry of the minor
components of the atmosphere,1 specifically hydrogen peroxide.2

Further studies regarded several systems obtained by substitu-
tions of the hydrogens in H2O2 by alkyl groups,3 halogens,4

and the analogous H2S2 and disulfanes.5 Quantum chemistry
has been proved to have reached the stage of resolving many
previously controversial features for these series of molecules
(dipole moment, equilibrium geometries, heights of barriers for
the chirality changing mode), which are crucial for intramo-
lecular dynamics, and quantum dynamics calculations have also
been performed to compute torsional levels and the temperature
dependence of their distributions. For intermolecular interactions
of H2O2 with various molecules and ions see also refs 6-8, and
with itself see ref 9 and references therein.

In this laboratory, previous joint experimental and theoretical
studies have been devoted to interactions of H2O with rare

gases,10 for which state-of-the-art quantum chemical calculations
have yielded complementary information on the interactions
(specifically the anisotropies) with respect to molecular beam
scattering experiments that measure essentially the isotropic
forces.10 Similar approaches and results have been pursued and
obtained for the H2S-rare gas systems.11 The experiments probe
intermolecular interactions by scattering measurements.12 In-
teresting alignment and orientation effects in the gas phase were
experimentally demonstrated, as due to molecular collisions,
and occurring typically when in a gaseous mixture a “heavier”
molecular component is seeded in a lighter one. The detection
of aligned oxygen in gaseous streams13 and further evidence
on simple molecules have been extended to benzene and various
hydrocarbons; see refs 14 and 15 and references therein. Other
investigations suggest that chiral effects can be seen in the
differential scattering of oriented molecules, in particular from
surfaces: this is reviewed in a previous paper,16 where it is
further pointed out that a possible mechanism of chiral bioste-
reochemistry of oriented reactants, acting through selective
collisions, may be of prebiotical interest.16,17 The dynamical
treatment of such collisions requires information on the nature
and mechanical properties of the peroxidic bond and the
associated torsional motion.

In the present paper we investigate the interaction of hydrogen
peroxide with the rare gases. These systems involve five atoms,
but the intramolecular modes of the hydrogen peroxide are
considered to be frozen except for the torsional angleγ (see
Figure 1 and ref 2). It is shown that the interaction potential
for this atom-floppy molecule problem can be expressed as a
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function of four variables: the polar coordinatesr, R, and â
(see Figure 2) and the dihedral angleγ. Because the range of
angular variables spans a three-dimensional manifold isomorphic
to S3 (the sphere embedded in the four dimensional Euclidean
spaceR4), the proper orthonormal expansion basis set is in terms
of hyperspherical harmonics (see, for example, refs 18 and 19).
We define such a basis set in terms of real combinations of
Wigner D-functions, which are described and tabulated, for
example, in ref 20.

To determine the expansion moments for the hyperspherical
expansion, we use a dozen “significant” configurations (at fixed
R, â, andγ) whose potential energy profiles as a function ofr
are calculated by state-of-the-artab initio techniques.

The plan of the paper is as follows. In section 2 we discuss
the representation of the potential energy surfaces, considering

in section 2.1 coordinates and symmetries and in section 2.2
an expansion of the potential interaction in terms of hyper-
spherical harmonics built as linear combinations of Wigner
D-functions to obtain real hyperspherical harmonics. Section
2.3 describes specific configurations that we considered repre-
sentative of the full potential energy surfaces. We call them
“leading configurations” and obtain explicitly their connections
with the moments of the hyperspherical harmonics expansion.
In section 3 theab initio calculations for such configurations
are presented, and in section 4 we discuss the results. Conclu-
sions follow in section 5.

2. Representation of the Potential Energy Surfaces

2.1. Coordinates and Symmetries.The positions of the rare
gas atom with respect to the H2O2 molecule is expressed in
terms of the spherical polar coordinatesrb ) (r, R, â), whereR
andâ are the azimuthal and polar angle, respectively (Figure
2). The origin is the instantaneous center-of-mass of the H2O2

molecule (it coincides with the middle of the O-O bond for
thetransgeometry). In ref 2 we gave arguments that the internal
torsional motion around the O-O bond is actually best described
as a rotation of the two OH radicals around the Jacobi vector21

joining their centers of mass, rather than as a rotation around
the O-O bond axis. This is an example of the use of local
orthogonal coordinates;21 see also ref 22. Because in the case
of the OH bond the center-of-mass is shifted with respect to
the O position by only∼1/17th of the bond length, the Jacobi
vector differs very little with respect to the O-O bond (see
Figure 1 and 2). Thezaxis will be taken along the Jacobi vector.
The corresponding torsional angle is denoted asγ (0 e γ <
2π). The xz plane contains the Jacobi vector joining the two
centers of mass and bisects symmetrically the instantaneous
H2O2 molecular geometry, imagined as a “book”, where the
O-O bond (more precisely the Jacobi vector) is the spine. It
coincides with the molecular plane in the planar geometriescis
(closed bookγ ) 0°) and trans (fully open bookγ ) 180°).
AnglesR andâ and distancer from the center-of-mass as the
origin of the Cartesian reference frame are the spherical polar
coordinates specifying the position of the rare gas atom:

(0 e r e ∞, 0 e â e π, 0 e R < 2π), and the vectorrb )
(r, R, â) is itself a Jacobi vector, so that this representation will
turn out to be particularly useful for dynamical treatments. It is
seen thatâ is the angle between the positivez axis and the line
formed between the atom position and the origin andR is the
angle between the positivex axis and the projection ofrb onto
the xy plane.

The potential describing the atom- floppy molecule systems
depends on these four coordinates and can be easily checked
to have the following symmetry properties:

The analytical form of the potential surface that will be built
will have the property thatV can be partitioned as a sum of
two contributions as follows:

Figure 1. Hydrogen peroxide illustrated in three characteristic mo-
lecular geometries: the two planarcis (closed book) andtrans (open
book), and the equilibrium one. The angle measuring the torsion around
the -O-O- bond (the opening of the book), is denoted asγ, the
dihedral angle H-O-O-H. In the upper side of the figure we have
views of the molecule alongside the O-O bond. The lower panels show
the coordinate frame used in this paper. In all three cases, three of the
atoms (the lower hydrogen and the two oxygens) lie in the plane of
the drawing. The origin is taken in the instantaneous center-of-mass
of the molecule. Thezaxis of the right-handed Cartesian frame is taken
alongside the Jacobi vector, which joins the centers-of-mass of the two
OH vectors. Thexz plane lies in the plane of the drawing for thecis
geometry, and perpendicular to the plane of the drawing in thetrans
case. It moves bisecting symmetrically the spine of the book as it opens.
In the cis and trans cases, they and x axes are perpendicular to the
plane of the drawing and point toward the reader.

Figure 2. Definition of the spherical coordinates of the vectorrb ) r,
â, R specifying the position of the rare gas atom in the reference frame
of Figure 1.r, â, andR coordinates are illustrated for the case of the
equilibrium geometry (see Figure 1).r is the distance between the
center-of-mass of the molecule and the rare gas atom,â is the angle
betweenrb and thez axis, andR is the angle between thex axis and the
projection ofrb onto thexy plane.

x ) r sin â cosR

y ) r sin â sin R

z ) r cosâ

V(r;R,â,γ) ) V(r;-R,â,-γ) )
V(r;-R,π-â,γ) ) V(r;R,π-â,-γ) (1)

V(r;R,â,γ) ) Vext(r;R,â) + Vint(r;γ) (2)
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where the termVext(r;R,â) accounts for the interaction contribu-
tion depending on the atom-molecule relative distancer and
orientation, andVint(r;γ) is the intramolecular atomic term
depending on distancer and on the internal torsion dihedral
angleγ.

2.2. Hyperspherical Harmonics Expansion.The manifold
spanned by the anglesR, â, and γ is isomorphic to the four
dimensional hypersphereS3 (see, e.g., refs 18 and 19). The
potential energy function of eq 2 can be expanded into a series
of appropriate angular functions multiplied by radial coefficients
(expansion moments). A suitable complete orthonormal set is
that of Wigner D-functions23 (here in their role as hyperspherical
harmonics), which depend on three Euler-like angles with the
same domain as the spherical anglesR andâ and the torsion
angleγ (see section 2.1).

The D-functions are in general complex, see, e.g., ref 20.
Therefore we will work out an alternative orthonormal basis
set imposing that the functions be real, denoting them as
RMM′

µ (R,â,γ), in terms of which hyperspherical harmonics the
expansion of the potential energy surface is as follows:

whereµ ) 0, 1, 2, ... andM (M′) ) -µ, -µ + 1, ..., 0, 1, ...,
µ and the VMM′

µ (r) coefficients are the expansion moments
depending on ther coordinate. The truncation of the set of basis
functions to a certain value of the indexµ depends on the
number of fixed atom-molecule configurations for which the
potential energy is known as a function ofr from ab initio
calculations, as specified later on in the paper. In terms of the
Wigner D-functions that are complex-valued, theRMM′

µ (R,â,γ)
are found to be simple real-valued linear combinations:

whereε ) (-1)M-M′.
Let us recall thatDMM′

µ (R,â,γ) ) eimRdMM′
µ (â)eiM′γ, where the

reduced Wigner rotation matrix elementsdMM′
µ (â) are con-

nected to Jacobi polynomials in cos(â). In particular,

essentially a Legendre polynomial in cosâ.
For µ ) 0, R00

0 (R,â,γ) ) 1. For µ ) 1 andµ ) 2 the basis
sets of 34 functions that can be obtained are listed in Tables 1

TABLE 1: Real Hyperspherical Harmonics RMM ′
µ (r, â, γ) for

µ ) 1

M/M′ 1 0 -1

1 [(1 + cosâ)/x2](cos
R cosγ -
sin R sin γ)

-sin â cosR [(1 - cosâ)/x2](cos
R sin γ -
sin R cosγ)

0 sinâ cosγ cosâ -sin â sin γ
-1 [(1 - cosâ)/x2](cos

R cosγ +
sin R sin γ)

sin R sin â [(1 + cosâ)/x2](sin
R cosγ +
cosR sin γ)
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and 2. Many of them can be excluded by enforcing the
symmetry properties of the potential (eq 1), in such a way that
all the functions depending on sinn R, sinn γ, cosn â, wheren is
an integer odd number are discarded.

After the enforcing of the symmetry conditions, the basis set
reduces to the six functionsR00

0 , R10
1 , R01

1 , R00
2 , R20

2 , and R02
2 ,

whose corresponding coefficients in the expansion given in eq
3 will be the ones that will be provided in this work.

In general, use of properly selected potential energy profiles
at fixed internal torsional angleγ and as a function of the
distancer of the atom from the molecular center-of-mass,
corresponding to approaches from different directions (specified
by R and â) allows us to set up systems of linear equations
(see eq 3), for the expansion momentsVMM′

µ (r). Therefore the
solution for variousr would give the moments that, inserted in
eq 3, would provide the full potential energy surface. Our choice
for specific configurations, corresponding to selected values of
R, â andγ is described next.

2.3. Leading Configurations and Expansion Moments.The
choice of the configurations relies upon physical considerations
on the geometrical features of the systems. We considered three
significant geometries of H2O2 corresponding to the equilibrium
(γ ) 112.54°), and to thecis and trans molecular geometry,
with γ ) 0° and γ ) 180°, respectively.2 For each of these
configurations the atom-molecule interaction has been calcu-
lated by considering the atom moving along the O-O bond
direction (â ) 0° andR indetermined) and along the direction
perpendicular to that bond (â ) 90°), atR ) 0°, 90°, and 180°.
These leading configurations are listed in Table 3. The expansion
moments are then obtained as a linear combination of the
potential profiles calculated for the above configurations. In the
following section, we give details about theab initio calculation
of the potential profiles for the various leading configurations.

The representation of the potential energy as a sum of the
intermolecular and intramolecular contributions (eq 2) can be
obtained in terms of the real hyperspherical harmonics
RMM′

µ (R,â,γ) by expanding the two terms (in eq 2) individually.
The intramolecular termVint(r;γ) involves R0M

µ (0,Π/2,γ) and
R0M

µ (0,0,γ) functions because it has to be independent fromâ
and R. Conversely, the intermolecular termVext(r;R,â) only
involves RM0

µ (R,â,0) basis functions. However, although not
explicitly dependent onγ, Vext(r;R,â) is referred to the three
main H2O2 geometries (thecis, trans, and equilibrium geometry)
and depends parametrically onγ.

The momentsVMM′
µ (i;r) (where the dependence upon the

molecular geometry is now specified by the symboli ) C, E,
or T for γ values corresponding tocis, trans andequilibrium
molecular geometries) are calculated by the potentials corre-
sponding to the leading configurations. For example, for the
cis geometries of the molecule we have the system

which can be inverted, for example, by Cramer’s rule to give

An entirely analogous set of equations holds for the equilibrium
case:

For the trans geometries, becauseT< ) T>, the V10
1 term is

missing:

It is now convenient to define thewi(γ) coefficients, which
establish the weight of each set of leading configurations (i )
C, T, E) according to the correspondingγ value. Specifically,
assuming the torsional potential expanded in a cosine series24

including cosnγ terms (n ) 0, 1, 2), we have, in general,

i ) C, T, E. Specifically,

TABLE 3: Definition of Leading Configurations, in Terms
of the r, â, and γ Angles

â ) 90°

γ [deg] R ) 0° R ) 90° R ) 180°
â ) 0°
R ) ind

cis 0 C> C⊥ C< C|

equilibrium 112.54 E> E⊥ E< E|

trans 180 T> T⊥ T< T|

C<(r) ) V00
0 (C;r) + V10

1 (C;r) R10
1 (180°,90°,0°) +

V00
2 (C;r) R00

2 (180°,90°,0°) + V20
2 (C;r) R20

2 (180°,90°,0°)

C⊥(r) ) V00
0 (C;r) + V10

1 (C;r) R10
1 (90°,90°,0°) +

V00
2 (C;r) R00

2 (90°,90°,0°) + V20
2 (C;r) R20

2 (90°,90°,0°)

C>(r) ) V00
0 (C;r) + V10

1 (C;r) R10
1 (0°,90°,0°) +

V00
2 (C;r) R00

2 (0°,90°,0°) + V20
2 (C;r) R20

2 (0°,90°,0°)

C|(r) ) V00
0 (C;r) + V10

1 (C;r) R10
1 (ind.,0°,0°) +

V00
2 (C;r) R00

2 (ind.,0°,0°) + V20
2 (C;r) R20

2 (ind.,0°,0°) (7)

V00
0 (C;r) ) 1

6
C<(r) + 1

3
C⊥(r) + 1

6
C> + (r)

1
3
C|(r)

V10
1 (C;r) ) 1

2
C<(r) - 1

2
C>(r)

V00
2 (C;r) ) - 1

6
C<(r) - 1

3
C⊥(r) - 1

6
C>(r) + 2

3
C|(r)

V20
2 (C;r) )

x3
6

C<(r) +
x3
3

C⊥(r) +
x3
6

C>(r) (8)

V00
0 (E;r) ) 1

6
E<(r) + 1

3
E⊥(r) + 1

6
E>(r) + 1

3
E|(r)

V10
1 (E;r) ) 1

2
E<(r) - 1

2
E>(r)

V00
2 (E;r) ) - 1

6
E<(r) - 1

3
E⊥(r) - 1

6
E>(r) + 2

3
E|(r)

V20
2 (E;r) )

x3
6

E<(r) +
x3
3

E⊥(r) +
x3
6

E>(r) (9)

V00
0 (T;r) ) 1

3
T<(r) + 1

3
T⊥(r) + 1

3
T|(r)

V00
2 (T;r) ) - 1

3
T<(r) - 1

3
T⊥(r) + 2

3
T|(r)

V20
2 (T;r) )

x3
3

T<(r) +
x3
3

T⊥(r) (10)

wi(γ) ) ai + bi cosγ + ci cos 2γ
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allowing to compute parametersai, bi, andci. Eventually, we
have

We can now writeVext(r;R,â,γ) in eq 2 as

where the above calculated moments 8, 9, and 10 are used,
except for theV00

0 (i;r) terms, which are employed to obtain an
expression forVint(r;R,â,γ).

Explicitly,

where d(r), e(r), and f(r) are obtained by imposing that the
torsional potential has the value of the proper energy barrier
heights for thecisandtransgeometry, and the zero of the energy
is taken at the equilibrium geometry. Therefore (Table 4)

which can be solved to gived, e, and f. If we now wantVint

expanded in hyperspherical harmonics withVjMM′
µ expansion

moments (see below),

We solve a 3× 3 linear system, obtained from the above
expression by introducing, for a givenr, the values of the
potential corresponding to thecis, trans, and equilibrium
geometries. We finally have

The momentVj00
0 (r), the coefficient of the constantR00

0 basis
function in the intramolecular term, can be thought of as the
potential averaged over theR, â angle domains and represents
the isotropic part of the atom-molecule interactions, whereas
Vj01

1 (r) andVj02
2 (r) are the terms representing the anisotropies.

3. Ab Initio Calculations

The ab initio calculations for the Rg-H2O2 systems were
performed using the Gaussian03 program.25 The choice of the
calculation level is based on the Maciel et al. studies2 of the
H2O2 monomer. In this work we focus on what is estimated to

be an accurate calculation level, which reproduces the geometric
parameters of the equilibrium geometry and gives realistic
barrier heights for thecis andtransgeometries, at a reasonable
computational cost. The second-order Møller-Plesset level,
using all electrons (MP2)FU), and the aug-cc-pVTZ basis set
were chosen for He, Ne, Ar, and Kr. For Xe we have used the
aug-cc-pVTZ-PP basis set according to refs 26, 27, and 28 where
relativistic effects are introduced in the basis through small-
core pseudopotentials. To minimize the basis set superposition
error (BSSE), the full counterpoise Boys and Bernardi correc-
tion29 was applied. Accordingly, the energies of monomers are
calculated using the same full basis set, and the interaction
energy is then defined as

whereøA and øB are the basis sets of each monomer of the
complex AB. We calculated a set of 81 single potential energy
points on the surface, for each of the eleven leading configura-
tions, for the He-H2O2 and Ne-H2O2 systems, 92 points for
the Ar-H2O2 and Kr-H2O2 and 131 points for Xe-H2O2. All
the H2O2 geometry parameters are kept frozen at their equilib-
rium values as presented in Table 4, exceptγ.

The eleven different leading configurations used to explore
the various features of the potential energy surfaces, four for
the equilibrium geometry, four for thecis geometry, and three
for the trans geometry, have been seen previously (section 1).
For each system, an additional configuration to be introduced
later served for assessing the accuracy of the proposed expan-
sion. All energies were calculated as a function ofr (Figure 2)
between the rare gas and the center-of-mass of H2O2.

The analytical form of the potential energy surfaces, for each
of the leading configurations, are constructed by fitting the
following fifth degree generalized Rydberg function into the
ab initio points:

whereDe, ak, Req, andEref are adjustable parameters. A nonlinear
least-squares procedure was used to obtain the values of the
adjustable parameters that minimize the differences between the
analytical energies obtained with the generalized Rydberg
function and the MP2(FU)/aug-cc-pVTZ data. Tables are
provided as Supporting Information.

4. Results and Discussion

For each of the H2O2-Rg systems (Rg) He, Ne, Ar, Kr,
Xe), we have considered the eleven leading configurations (see
Table 4) for which the atom-molecule interaction energy has
been calculated at variousr (the distance between the atom and
the center-of-mass of the molecule) by theab initio methods,
explained in detail in section 3.

Figures 3-5 show both theab initio energy points and the
corresponding Rydberg curve fittings for the complete rare gas
series and for each of the leading configurations. Further data
are given as Supporting Information. The leading configurations
can be distinguished into three groups, according to the geometry
of the H2O2 molecule (cis, trans, and equilibrium) and as
expected, the corresponding energy curves fall in different
energy ranges: equilibrium (lower),trans (intermediate),cis
(higher energies), according to the order common to all systems.

Another common trend that can be seen is that distances of
minimum energy move to higher values and the well depths
increase in going from lighter to heavier atoms. (A similar

wC(0°) ) 1 wC(180°) ) 0 wC(112.54°) ) 0

wT(0°) ) 0 wT(180°) ) 1 wT(112.54°) ) 0

wE(0°) ) 0 wE(180°) ) 0 wE(112.54°) ) 1

wC(γ) ) (0.319+ 0.500 cosγ + 0.181 cos 2γ)

wT(γ) ) (0.095- 0.500 cosγ + 0.405 cos 2γ)

wE(γ) ) (0.586- 0.586 cos 2γ) (11)

Vext(r;R,â,γ) ) ∑
i)C,T,E

wi(γ)[V10
1 (i;r) R10

1 (R,â,0) +

V00
2 (i;r) R00

2 (R,â,0) + V20
2 (i;r) R20

2 (R,â,0)] (12)

Vint(r,γ) ) d(r) + e(r) cosγ + f(r) cos 2γ

Vint(r;0°) ) d + e + f ) 7.3623 kcal/mol

Vint(r;180°) ) d - e + f ) 1.1036 kcal/mol

Vint(r;112.54°) ) d - 0.383e - 0.706f ) 0 kcal/mol

Vint(r;γ) ) Vj00
0 (r) + Vj01

1 (r) R01
1 (0,π/2,γ) + Vj02

2 (r) R02
2 (0,π/2,γ)

Vj00
0 (r) ) 0.319V00

0 (C;r) + 0.586V00
0 (E;r) + 0.095V00

0 (T;r)

Vj01
1 (r) ) 0.5V00

0 (C;r) - 0.5V00
0 (T;r)

Vj02
2 (r) ) 0.209V00

0 (C;r) - 0.677V00
0 (E;r) + 0.468V00

0 (T;r) (13)

ECP ) EAB(øA + øB) - [EA(øA + øB) + EB(øA + øB)] (14)

V(R) ) De∑
k)1

5

(1 + ak(R - Req)
k) exp[-a1(R - Req)] +

Eref (15)
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behavior was also observed in previous studies of H2O10 and
H2S-Rg systems.11)

It is worth noting that the “perpendicular” approach (â )
90°, R ) 90°), whatever the geometry of the molecule (E⊥, C⊥,
andT⊥), leads to systematically more stable systems than the
corresponding “collinear” approaches (â ) 0°), E|, C|, andT|,
which are also much more repulsive. Among thecis configura-
tions (see Figure 1), the one atâ ) 90° and R ) 180°, (C>)
with the atom lying on the molecule plane and approaching the
molecule from the hydrogen atom side, results to be the most
stable, for all the rare gas series. The difference in energy
between these curves and theC< curves, with the atom at the
opposite side of the hydrogens, increases from He to Xe. The
C< curve exhibits the softest potential profiles.

Concerning thetrans configurations the two directionsR )
0° and R ) 180° are equivalent and theT< and T> curves
coincide, being the ones with the lowest energy minimum.

The equilibrium configurations are those with the lowest
energy profiles. Among them, theE⊥ configuration is the most
stable (the lowest energy minimum) and at small distances is
more repulsive than bothE> andE< curves.

The energy profiles corresponding toâ ) 0° configurations,
with the atom coming along the O-O bond direction, are shifted

at longer distances systematically for all the rare gas series. This
can be explained by the fact that for the same value of the
distance from the center-of-mass of the molecule, the atom can
get closer to an oxygen atom when coming along the O-O
bond directions, than if coming from directions perpendicular
to the bond.

Figure 6 shows a comparison of theab initio energy profiles
for all the rare gas series, corresponding to the molecule
at the equilibrium (γ ) 112.54°) andR ) 56.27° andâ ) 90°
with the analogous curves as obtained from the hyper-
spherical expansion. This configuration was not included in the
calculation of the expansion moments and the comparison is a
useful test for the validity of the hyperspherical expansion.
Although the difference can be appreciable in the well depths,
especially for the heavier atoms, there is a substantially good
agreement (very good for Helium and Neon), concerning the
minimum energy distances and the shape of the curves, a
remarkable fact, considering that the configuration is far from
those included in the calculation of the hyperspherical ex-
pansion.

Figure 7 shows the expansion moments for the Ar-H2O2

interaction, as a function of the distance from the molecule
center of mass. The isotropic part of the potential, referred to

TABLE 4: Geometries and Barriers for the H2O2 at the MP2/aug-cc-pVTZa Level

molecular
geometry RHO [Å] ROO [Å] ∠HOO [deg] ∠HOOH [deg] barrier [kcal mol-1]

equilibrium 0.9668 1.4537 99.6128 112.5422 0
(0.950( 0.005)b (1.475( 0.004)b (94.8( 2)b (119.8( 3)b

(0.9627)c (1.4525)c (99.91)c (112.46)c

cis 0.9670 1.4628 104.1053 0.0000 7.3623
(0.9628)c (1.4630)c (104.14)c (0.0)c (7.276)c

(7.033( 0.071)d

trans 0.9663 1.4652 97.9109 180.0000 1.1036
(0.9616)c (1.4637)c (98.31)c (180.0)c (1.078)c

(1.104( 0.011)d

a Theoretical data from ref 2.b Experimental data from ref 30.c Theoretical data from ref 31 at the CCSD(T)/cc-pVQZ level.d Experimental
data from ref 24.

Figure 3. He-H2O2 and Ne-H2O2 interaction energies for the leading configurations of Table 3 as a function of the distance of the rare gas from
the center-of-mass of the hydrogen peroxide molecule. Crosses indicateab initio points (others lie outside of the drawings) and curves are from
Rydberg fits, as described in the text.
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thecis, trans, and equilibrium geometry of H2O2, is plotted along
with its value averaged over the same three molecular geom-
etries, using thew coefficients of section 2.3. Also the
contribution of the anisotropy is shown by the momentsVj01

1

and Vj02
2 . These are nearly constant in most of the considered

distance range and do not have a minimum. As expected, the
isotropic terms of the potential show minima and forr f ∞

asymptotically tend to the energy of the isolated H2O2 molecule
in the cis, trans and equilibrium configurations.

The quantity in Figure 7, which allows comparison with other
systems, isVj00

0 (r), representing the isotropic component of the
interaction, corresponding to full averaging over both internal
torsional angleγ and the external anglesR andâ. Table 5 lists
well depths and positions for this term, which is the one that
shows the possibility of being measurable in molecular beam

Figure 4. Ar-H2O2 and Kr-H2O2 interaction energies for the leading configurations of Table 3 as a function of the distance of the rare gas from
the center-of-mass of the hydrogen peroxide molecule. Crosses indicateab initio points (others lie outside of the drawings) and curves are from
Rydberg fits, as described in the text.

Figure 5. Xe-H2O2 interaction energies for the leading configurations
of Table 3 as a function of the distance of the rare gas from the center-
of-mass of the hydrogen peroxide molecule. Crosses indicateab initio
points (others lie outside of the drawing) and curves are from Rydberg
fits, as described in the text.

Figure 6. Rare gas-H2O2 interaction energies as a function of the
distance of the rare gas from the center-of-mass of the hydrogen
peroxide molecule, for the equilibrium (γ ) 112.54°) geometry and
the rare gas atom approaching from a direction given byâ ) 90° and
R ) 56.27°. Lower panel: crosses indicateab initio points (others lie
outside of the drawing) and curves are from Rydberg fits, as described
in the text. Upper panel: curves indicate hyperspherical expansion as
described in the text.
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scattering experiments. It is interesting to compare the values
in Table 5 with those of the recently investigated systems, H2O10

and H2S11 with the rare gases. The series ofrm values for the
H2O2 systems investigated here is found to be intermediate
between the corresponding values for H2O and H2S, in agree-
ment with what is expected from known correlations of van
der Waals forces with the corresponding atomic and molecular
polarizabilities of the interacting parameters.12 Well depths
follow similar trends, although less quantitatively.

Regarding anisotropies, as can be seen from Figures 3-5,
they follow the same trends for all systems, and Figure 7
confirms that they are generally small and slowing varying. This
can be visualized in Figure 8 (where dependence on the torsional
angleγ is shown, properly freezing the anglesR andâ) and in
Figure 9 (where dependence on theR angle is shown, at fixed
â ) 90° andγ ) 112.54°). These graphs have been obtained
by using the full potential energy surface generated by the
hyperspherical harmonics expansion, which produce a smooth
interpolation among the curves corresponding to the 12 leading
configurations that we have considered in this paper.

5. Concluding Remarks and Perspectives

The interaction potentials of H2O2 with the five rare gases
has been studied byab initio calculations and represented
through a hyperspherical harmonic expansion suited for atom-
floppy molecule interactions, floppiness in this case being due
to the torsion mode around the O-O bond.

To determine the expansion moments, we chose a dozen
significant (leading) configurations, thought to be representative
also on account of the symmetries of the systems. This has
allowed us to build up an interaction potential expansion

potentially useful for dynamical studies by classical or quantum
mechanics. For early investigations by classical trajectories of
clustering of H2O2 molecule by Ar, see refs 32 and 33. This
work provides a formulation that is particularly suited for future
quantum mechanical calculations, specifically of chirality
changing collisions.

The hyperspherical expansion appears to be a powerful tool:
it allows implementation of symmetries and of further informa-
tion coming from introduction of additional configurations.
Interpretation of experimental molecular beam scattering studies
can also be assisted by these investigations. However, production
of intense and stable beams of H2O2 still appears to be a

Figure 7. Dependence on atom-molecule distance of some repre-
sentative isotropic (continuous curves) and anisotropic (dashed curves)
moments of the hyperspherical expansion for Ar-H2O2.

TABLE 5: Well Depth, E (in kcal/mol), and Corresponding
Atom-Molecule Distance,
rm, of the Avarage Isotropic Expansion MomentVj00

0

system rm ε

He-H2O2 3.626 0.0660
Ne-H2O2 3.734 0.1234
Ar-H2O2 3.870 0.3944
Kr-H2O2 3.967 0.4951
Xe-H2O2 4.106 0.6419

Figure 8. Illustration of the potential energy surface for the interaction
of Ar with H2O2, as the torsional angle varies in thexyplane (see Figure
1). The radial coordinate in this plane is the distancer of the Ar atom
from the center-of-mass of the H2O2 molecule, and the approach is
perpendicular to the O-O bond in the direction havingR ) 0° andâ
) 90°. Visible are ridges corresponding totrans and cis barriers
separating the valleys where the two enantiomeric equilibrium geom-
etries lie. The other rare gases behave similarly.

Figure 9. View of the potential energy surface for the interaction of
Ar with H2O2, as the angleR varies in thexy plane (see Figures 1 and
2) in the equilibrium geometry (γ ) 112.54°). The direction of approach
is given by the angleâ ) 0° and therefore takes place in thexy plane,
perpendicular to the spine of the book. The radial coordinate in this
plane is the distancer of the Ar atom from the center-of-mass of the
H2O2 molecule, and the variation with the angleR shows that the
potential energy surface is pratically isotropic from this perspective;
barely visible are valley bottoms arising from evolutions of minima
when the spine of the book is hit from outside or inside.
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challenge, although it would be extremely useful to extend the
phenomenology being established for interactions of similar
molecules of remarkable relevance, H2O10 and H2S.11 At this
stage, we can observe that one of the present resultsstheV00

0 (r)
term that comes out of averaging over both the intramolecular
torsional angleγ and intermolecular orientational anglesR and
âspermits a favorable comparison with the H2O and H2S cases,
being the average well depths and ranges of the correct
magnitudes, as expected from currently available estimates for
typical van der Waals interactions as reviewed in ref 12. The
delicate question of the role of the hydrogen bonding10 in these
complexes, and more generally in those involving peroxides,
has not been specifically addressed in this work but should be
possibly revisited when further inputs come from experiments.
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